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Abstract

Model-based estimates of future uncertainty are generally based on the in-sample fit of

the model, as when Box-Jenkins prediction intervals are calculated. However, this approach

will generate biased uncertainty estimates in real time when there are data revisions. A

simple remedy is suggested, and used to generate more accurate prediction intervals for

25 macroeconomic variables, in line with the theory. A simulation study based on an

empirically-estimated model of data revisions for US output growth is used to investigate

small-sample properties.

Keywords: in-sample uncertainty, out-of-sample uncertainty, real-time-vintage estima-

tion

JEL code: C53.

∗Michael P. Clements is an Associate member of the Institute for New Economic Thinking, Oxford Martin
School, University of Oxford, UK.

i



1 Introduction

There has been much recent interest in macro-forecasting in real-time. By this we mean how

the forecasting model should be specified, estimated, and the resulting forecasts evaluated, once

we acknowledge that the data on which these three activities is based is subject to revision

(for all but a small number of series such as interest rates and exchange rates). A number

of papers have considered modelling the revisions process (see, e.g., Cunningham, Eklund,

Jeffery, Kapetanios and Labhard (2009), Jacobs and van Norden (2011), Kishor and Koenig

(2012)); or using single-equation models with ‘real-time-vintages’(as in Koenig, Dolmas and

Piger (2003), Clements and Galvão (2013b)) which we refer to as RTV-estimation and discuss

below; or modelling multiple vintages of data, as with vintage-based vector autoregressive

models (see, e.g., Patterson (1995, 2003), Clements and Galvão (2013a)). Other papers have

considered whether assessing predictability in real-time may change the conclusions one would

draw concerning putative explanatory forces, or the usefulness of estimates of the output gap

as a guide to monetary policy in real time.1 Croushore (2011a, 2011b) provide useful state-of-

the-art reviews.

These related strands of research are all concerned with first-moment prediction: either

improving the accuracy of forecasts of the conditional expectation, or of providing a more

realistic appraisal of the accuracy of these predictions. In this paper we instead investigate the

implications of data revisions for assessments of forecast uncertainty, specifically, the accuracy

of prediction intervals. We show that the ‘traditional’ approaches to calculating prediction

intervals will tend to be either too wide, when data revisions ‘add news’, or too narrow, when

the revisions process ‘removes noise’. These effects are first-order, in the sense that they do not

disappear when the sample size gets large, and are not caused by non-normal errors.2

Clearly, the effects of data vintages on first and second-moment prediction can be side-

1On the former, it has been argued that the use of final-revised data may exaggerate the predictive power of
explanatory variables relative to what could actually have been achieved at the time using the then available data
(see, e.g, Robertson and Tallman (1998), Faust, Rogers and Wright (2003)), and on the latter see Orphanides
(2001), Orphanides and van Norden (2005), Garratt, Lee, Mise and Shields (2009, 2008) Clements and Galvão
(2012), inter alia.

2For example, it is often argued that Box-Jenkins prediction intervals suffer from the neglect of parameter
estimation uncertainty and the possible non-normality of the underlying model’s disturbances, and as a result
there has been much interest in bootstrapping prediction intervals (see e.g., Thombs and Schucany (1990)). These
problems persist in the present context, but even in their absence prediction intervals would be incorrectly-sized
in the presence of data vintages.
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stepped by considering fully-revised data, whence observations are no longer subject to revi-

sion.3 Pseudo out-of-sample exercises use fully-revised data (e.g., the vintage of data available

at the time of the study), and at each point in time the forecasting models are specified and the

parameters estimated using only data for time periods up to that point in time. Such exercises

are useful as a way of assessing how well the model or models fit or forecast the true data,

and the out-of-sample aspect guards against ‘overfitting’, i.e., the models capturing chance or

non-recurrent sample-specific features. A real-time forecasting exercise mimics the environment

a real-world forecaster faces - at each point in time the forecasting models are specified and the

parameters estimated using only data for time periods up to that point in time, but in addition

the data are taken from the vintages that would have been available at that point in time.4 So

assuming a one period delay in data availability, at time t a forecaster will have access to the

vintage-t value of the period t− 1 observation, denoted ytt−1, and similarly the second estimate

of the t − 2 period, ytt−2, and so on. If the forecaster wishes to use only data which has been

revised n times, say, the most recent data that could be used would be for t−n−1 (i.e., ytt−n−1,

ytt−n−2, . . .). It will rarely be optimal to ignore data for periods t − n − 2, . . . , t − 1 (for large

n), so the real-world forecaster will be forced to work with data subject to revision. This is the

environment we seek to mimic in the real-time analysis.

Section 2 presents a simple example to motivate the concerns of the paper: the true model

is a zero-mean first-order autoregressive process (AR(1)), and the true value of the process is

revealed the period after the first estimate, so only the first estimate is subject to revision.

Further, we ignore estimation uncertainty, so that model parameters take on their population

parameters. We show that the standard approach gives an incorrect assessment of forecast

uncertainty, and consequently incorrectly-sized prediction intervals. We focus on prediction

intervals, but the points we make apply more generally to measures of forecast uncertainty

(such as forecast densities). We then suggest a remedy that has been used for first-moment

prediction, and has the virtue of simplicity and does not require that the revisions process be

3Of course any observation no matter how far back in time may be changed in response to far-reaching
methodological changes. By fully-revised data we mean data that have undergone the initial and three anual
rounds of revsions (see e.g., Landefeld, Seskin and Fraumeni (2008) for a description of the revisions process of
the US Bureau of Economic Analysis NIPA data).

4Real-time exercises are required to provide fair assessments of the relative accuracy of the model forecasts
compared to survey expectations, for example.
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modelled: section 3. Section 4 provides an empirical illustration, and shows the improvements

that result from using the approach advocated in this paper. We consider 25 macro variables,

which exhibit different patterns of revisions, so that the conclusions we draw are reasonably

general and do not rest on a few variables with (possibly) idiosyncratic features. In section

5 we present a simulation study of the two approaches to calculating prediction intervals in

a controlled environment that abstracts from various factors that might affect the empirical

comparisons, such as parameter non-constancies, for example. Finally, section 6 offers some

concluding remarks.

2 Motivating example

Suppose the true (i.e., fully-revised) values yt follow an AR(1):

yt = αyt−1 + ηt + vt (1)

and the estimates of yt are given by:

yt+1t = yt − vt + εt

yt+nt = yt

for n = 2, 3, . . .. We assume ηt, vt and εt are mutually uncorrelated, zero-mean iid random

variables. Then the revision yt+2t − yt+1t = vt − εt consists of a noise component (when σ2ε =

E
(
ε2t
)
6= 0) and a news component (when σ2v = E

(
v2t
)
6= 0). The news/noise characterization

of data revisions is due to Mankiw and Shapiro (1986). Suppose that revisions are purely news,

so that σ2ε = 0. Then the first estimate yt+1t = αyt−1+ηt does not contain the news component

vt, but the revised estimate (which is the fully-revised value in this simple illustration) adds

this term: yt+2t = yt = αyt−1 + ηt + vt. A characteristic of news is that the revised value is

unpredictable from information available at the time of the first estimate, or in other words,

the revision yt+2t −yt+1t = vt is not systematically related to yt+1t . But the news revision clearly

is correlated with the true value. For news, later estimates are more accurate estimates of the

true value than earlier estimates (this follows trivially here because yt+2t = yt and so is a perfect

estimate). Suppose now that revisions are solely noise, i.e., σ2ε 6= 0 (but σ2v = 0). For noise, the
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revised value removes measurement error: the revisions are predictable (based on period t− 1

information) but are not correlated with the true value.

It follows directly that news revisions imply var(yt+1t ) < var(yt+2t ), while noise revisions

imply that var(yt+1t ) > var(yt+2t ).

Consider then a sequence of forecasts made in real time, and in particular, consider the 1-step

prediction interval for the period T observation made at time T , at which time the available data

consists of
{
. . . ,yT−1T−2,y

T
T−1

}
, where yT−jT−j−1 =

[
. . . , yT−jT−j−2, y

T−j
T−j−1

]′
, for j = 0, 1, 2, . . .. The

traditional approach is to specify and estimate the forecasting model using the period T -vintage{
yTT−1

}
, on the grounds that this constitutes the best available estimates of {. . . , yT−2, yT−1},

irrespective of whether revisions add news, remove noise, or are some combination of the two.

The use of the forecast origin vintage was referred to as end-of-sample (EOS) estimation by

Koenig et al. (2003).

An AR(1) is estimated on the EOS data:

yTt = βyTt−1 + et,EOS , for t = . . . , T − 2, T − 1 (2)

and the forecast of yT is ŷT ,EOS = βyTT−1. As the sample gets large relative to the number of

data revisions, it follows that OLS estimation of β in (2) will consistently estimate α in (1),

because all but the last observation on the dependent variable (t = T − 1) will equal the true

values. This clearly holds more generally for a finite number of data revisions before the truth

is revealed, and holds irrespective of the whether revisions are news or noise.5

2.1 News revisions

As the number of observations gets large, the estimated standard error σ̂T−1,EOS from (2) will

approach
√
σ2η + σ2v. This is because E

(
yTt − βyTt−1

)2
= E (yt − αyt−1)2 = E (ηt + vt)

2 = σ2η +

σ2v for t = . . . , T −2, and for t = T −1, E
(
yTt − βyTt−1

)2
= E (yt − vt − αyt−1)2 = E (ηt)

2 = σ2v.

The effect of the last observation will disappear as T gets large. The Box-Jenkins (BJ) (1− α)

5Clements and Galvão (2013b) discuss the general case of models of order p, non-zero means in the true
process and the revisions, and more than one data revision.
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level prediction interval is given by:

{
ŷT ,EOS +zα

2
σ̂T−1,EOS , ŷT ,EOS +z1−α

2
σ̂T−1,EOS

}
where zγ is the γ quantile of the standard normal, γ = Φ (zγ), and where Φ denotes the standard

normal distribution function.

The expected squared error of the out-of-sample forecast is given by:

E
(
yT+1T − ŷT ,EOS

)2
= E (yT − vT − α (yT−1 − vT−1))2

= σ2η + α2σ2v. (3)

Assuming that the true values follow a stationary AR(1), |α| < 1, then the in-sample estimate

of uncertainty (σ̂2T−1,EOS = σ2η + σ2v) overstates the uncertainty surrounding the forecast of

yT+1T . That is, the prediction intervals are too wide. The intuitive explanation is that the

in-sample estimate is based on predicting the revised values, with added news relative to the

first estimate, and so is accomplished with less precision than the forecasting of a first estimate

(yT+1T ) out-of-sample.

We have assumed that the target is the first estimate rather than the fully-revised value

(in our setup, yT+2T = yT ).6 The BJ interval would now under-estimate the true out-of-sample

uncertainty and the actual coverage rate would be less than the nominal:

E (yT − ŷT ,EOS )2 = E (yT − α (yT−1 − vT−1))2

= σ2η +
(
1 + α2

)
σ2v.

2.2 Noise revisions

Now suppose revisions reduce noise (and σ2v = 0). Consider the in-sample fit of the model. For

noise, E
(
yTt − βyTt−1

)2
= E (yt − αyt−1)2 = E (ηt)

2 = σ2η for t = . . . , T − 2, and for t = T − 1,

E
(
yTt − βyTt−1

)2
= E (yt + εt − vt − αyt−1)2 = E (ηt + εt)

2 = σ2v + σ2ε, so for large T the in-

sample error variance will be estimated as σ2η.

6Real-time forecasting exercises commonly assume that the goal is to forecast a relatively early vintage value,
such as the value available one or two quarters after the reference quarter.
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Consider now the out-of-sample expected squared error:

E
(
yT+1T − ŷT ,EOS

)2
= E (yT + εT − α (yT−1 + εT−1))

2

= σ2η +
(
1 + α2

)
σ2ε (4)

which exceeds the in-sample error variance. In a reverse of the situation when revisions are

news, when revisions reduce noise the in-sample error variance under-estimates the true out-of-

sample uncertainty, and consequently the actual coverage of the BJ intervals will fall short of the

nominal. Intuitively, when revisions remove noise, the fully-revised data used in the in-sample

calculation will lead to an under-estimation of the uncertainty that characterizes the out-of-

sample estimate. If instead we target the fully-revised value, E (yT − ŷT ,EOS )2 = σ2η + α2σ2ε,

which still exceeds the in-sample estimate but to a lesser extent.

To summarize: prediction intervals will be too wide if data revisions are news (and the aim

is to forecast an early vintage, otherwise they will be too narrow), but too narrow if revisions

reduce noise.

In a pseudo out-of-sample forecasting exercise, e.g., using the data vintage
{
yT+nT−1

}
, n > 0,

to forecast yT , there are no data vintage effects and in-sample and out-of-sample uncertainty

would match save for small-sample effects and if the normal assumption were inappropriate.

A solution to the problem of obtaining correctly-sized prediction intervals in real-time is to

use RTV-estimation. This was suggested by Koenig et al. (2003) for first-moment prediction,

and further considered by Clements and Galvão (2013b) with an emphasis on autoregressive

processes. In the following section we briefly discuss RTV-estimation, and show that it provides

intervals with correct coverage.

3 RTV-estimation

US NIPA data are typically subject to revision for up to three and a half years after the first

estimate is published. Koenig et al. (2003) note that EOS implies that a large part of the

data used in model estimation has been revised many times, while the forecast is conditioned

on data that has been just released or only revised a few times. That is, the data vector

yTT−1 =
[
. . . , yTT−2, y

T
T−1

]′
comprises the first estimate of yT−1, the first revision (i.e., the second

6



estimate) of yT−2, and so on up to mature data for the earlier data periods. They show that

more accurate forecasts can be achieved (in principle) by not mixing mature and lightly-revised

data, and instead advocate using ‘real-time vintage’(RTV). The forecasting model is estimated

on data of a similar maturity to the data on which the forecast is conditioned.7

For an AR(p) the forecast will be conditioned on early-release data (yTT−1 =
[
yTT−1, y

T
T−2, . . . y

T
T−p

]′
.

The RTV approach estimates the AR(p) on matching early-release data:

ytt−1 = β0 +

p∑
i=1

βiy
t−1
t−1−i + et,RTV , for t = . . . , T − 1, T, (5)

and the forecast of yT is yT |T−1,RTV = β0 + β1y
T
T−1 + . . .+ βpy

T
T−p. If we let β =

[
β1 . . . βp

]′,
then Clements and Galvão (2013b) show that for a general model of data revisions, as in Jacobs

and van Norden (2011), the solution (φ∗0, φ
∗) of:

arg min
φ0,φ

E

[(
yT+1T − φ0 − φ′yTT−1

)2]
(6)

is satisfied by the RTV-population values: β0 = φ∗0, and β = φ∗. That is, given that the

forecast is conditioned on yTT−1, RTV will deliver (in population) the values of the intercept and

autoregressive parameters which minimize the expected squared error. Clements and Galvão

(2013b) show that (φ∗0,φ
∗) depend on the nature of data revisions (news or noise, whether they

are zero mean, etc.).

To show that prediction intervals are correctly-sized with RTV-estimation, we return to the

simple example of section 2, that is, a zero-mean AR(1) with a single revision.

3.1 News revisions

The population value of β in the RTV-regression model:

ytt−1 = βyt−1t−2 + et

7This is Strategy 1 of Koenig et al. (2003), p.620, which we refer to throughout as RTV-estimation, or the
use of RTV data.
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is β = Cov
(
ytt−1, y

t−1
t−2
)
/V ar

(
yt−2t−2

)
= α.8 Then the in-sample error variance is based on

V ar
(
ytt−1 − αyt−1t−2

)
which on substituting for ytt−1 and y

t−1
t−2 is equal to σ

2
η +α2σ2v. It is a simple

matter to show that this equals the out-of-sample uncertainty: E
(
yT+1T − yT |T−1,RTV

)2
=

E [yT − vT − α (yT−1 − vT−1)]2 = σ2η + α2σ2v.

3.2 Noise revisions

When there are noise revisions, we can show that in population:

β = φ∗ = α
σ2y

σ2y + σ2ε
. (7)

The in-sample error variance and the out-of-sample squared forecast error are equal, and pre-

diction intervals based on the former will have correct conditional coverage. The in-sample

error variance is:

V ar
(
ytt−1 − γytt−2

)
= V ar [yt−1 + εt−1 − β (yt−2 − εt−2)]

and the out-of-sample squared forecast error is:

V ar
(
yT+1T − yT |T−1,RTV

)2
= V ar [yT + εT − β (yT−1 + εT−1)] .

The two variances are equal given the assumed stationarity of {yt} and {εt}.

Note that for both news and noise revisions, the equality of the in and out-of-sample error

variances rests on forecasting the first estimate of yT .

It follows directly that the equivalence of the in and out-of-sample error variances holds

more generally for RTV-estimation. Clements and Galvão (2013b) argue that OLS estimation

8Note:

Cov
(
ytt−1, y

t−1
t−2
)
= E

[(
αyt−2 + ηt−1

)
(yt−2 − vt−2)

]
= ασ2y − ασ2v,

where σ2y = V ar (yt), and

V ar
(
yt−1t−2

)
= V ar (yt−2 − vt−2) = σ2y + σ2v − 2Cov (yt−2, vt−2) = σ2y − σ2v

This result is a special case of the general formulae presented in Clements and Galvão (2013b). Further, the
RTV parameter β only equals the autoregressive parameter of the true process (α) for the AR(1) with news, as
here.
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of (5) yields the same population values of the estimators as:

(β∗0,β
∗) = arg min

β0,β
E
(
yt+1t − β0 − βytt−1

)2
. (8)

A typical observation on the LHS and RHS variables in (5) is
{
yt+1t ,ytt−1 =

(
ytt−1 . . . y

t
t−p
)′},

which is a covariance stationary process.

The estimation loss function (8) is identical to the real-time forecast loss function (6).

Clements and Galvão (2013b) stress that the solutions to the two in terms of (φ0, φ) and

(β0, β) coincide, β∗0= φ∗0 and β
∗ = φ∗, and thus RTV-estimation delivers optimal forecasts.

For our purposes, note in addition that the minimized values of the functions in (6) and (8) are

identical, implying in addition that the in-sample estimate of uncertainty from RTV-estimation

will provide a reliable guide to out-of-sample forecasting. This holds for general revisions

processes, such as that considered by Jacobs and van Norden (2011).

An alternative to using RTV data is to use models that draw on the multiple estimates of

each observation which are typically available.9 In terms of first-moment prediction, Clements

and Galvão (2013b) compare the accuracy of RTV with forecasts from a vector autoregression

(VAR), that models the relationships between the multiple-vintage estimates (in the spirit of

recent work by Garratt et al. (2008, 2009)), and with the approach of Kishor and Koenig (2012),

which specifies a model for the data revisions process which is estimated along side a VAR for

the ‘post-revision’data. They find the performance of these more elaborate models is on a par

with RTV-estimation of the AR (for first-moment prediction). In this paper we do not examine

the potential usefulness of these multiple-vintage models for calculating prediction intervals.

4 BJ prediction intervals for AR models estimated using RTV

and EOS

We consider 25 US macro variables which are subject to data revisions. The variables are

described in table 1. The data vintages are taken from the Real-Time Data Set for Macro-

economists (RTDSM) of Croushore and Stark (2001). Our first ‘vintage-origin’is 1996:Q2, and

9Examples of multiple-vintage models include Harvey, McKenzie, Blake and Desai (1983), Howrey (1984),
Patterson (1995, 2003), Jacobs and van Norden (2011), Cunningham et al. (2009) and Garratt et al. (2009, 2008).

9



the last is 2011:Q1, so that we have 15 years of quarterly forecast origins.10 In order to estimate

the models by EOS, we require that each data vintage provides a long enough history of past

observations. We use a rolling-window forecasting scheme, where for the first vintage origin

of 1996:Q2, we use data from 1984 onwards. However, for RTV, we need data vintages going

back to 1984 to have data over the same historical period. That is, we require an additional 12

years of data-vintages for RTV estimation. This requirement was satisfied for the 25 variables

forecast in this study.11

For all but one of the variables (ruc - the unemployment rate) we model, and evaluate

forecasts of, the first difference of the natural logarithm. The variable ruc is modelled and

forecast untransformed.

To focus on the RTV versus EOS issue, in all cases we use AR(2) models (i.e., two autore-

gressive lags), although the number of lags could be selected for each variable at each forecast

origin using an information criterion such as BIC.12 The real-time (EOS) forecasting perfor-

mance of the AR models (estimated by EOS) has been shown to be improved by discarding the

pre-Great Moderation data (Clements (2014)), which is the reason we set the initial start point

of the estimation period to 1984. The actual values are taken from the vintage available one

quarter after the target quarter. So for the forecast of 1996:Q2 from the first vintage origin of

1996:Q2, for example, this would be the value available in the 1996:Q3 vintage.

Table 2 records our first set of results: the relative magnitudes of the models’estimated

standard errors for RTV and EOS estimation; t-statistics of the null that revisions are news;

t-statistics of the null that revisions are noise; and the actual coverage rates of one-step ahead

BJ intervals. The tests for news and noise are based on the revisions between the first-estimates

yt+1t , and the data available some three and a half years later yt+15t , which includes the three

rounds of annual regular revisions. We test for news and noise revisions using, respectively:

yt+1t − yt+15t = α+ βney
t+1
t + ωt

10However, the 1999:Q4 and 2009:Q3 vintages contain missing values for many series and these forecast origins
are excluded.
11For the Bureau of National Accounts variables the RTDSM of Croushore and Stark (2001) containing missing

values for the 1996:Q1 estimates of 1995:Q4. These do not affect the EOS forecasts, because the first forecast
origin is 1996:Q2, but these missing values do affect all RTV forecasts. We have simply set the values for 1995:Q4
to the 1995:Q3 values in the same (1996:Q1) vintage.
12We calculated the statistics reported in table 2 for models with an autoregressive order of one, and found

the results were qualitatively unchanged (not reported to save space).
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and:

yt+1t − yt+15t = α+ βnoy
t+15
t + ωt.

We find that 9 of the 25 variables have data revisions which are news, in that we do not

reject βne = 0, but we do reject βno = 0, at conventional levels.13 For all of these variables the

in-sample standard deviation estimated by EOS exceeds the RTV estimate. For the 7 variables

for which we do not reject βno = 0 but do reject βne = 0, implying noise revisions, we find

the reverse - the EOS standard deviation is smaller than the RTV estimate. Hence for the 16

variables which can be categorized as news or noise, the relative magnitudes of the in-sample

standard deviations are as expected given the analysis in section 3. The remaining variables

cannot be characterized as purely news or noise, so it is not clear what one would expect to

find.

In terms of out-of-sample performance, for around 80% of the variables the RTV intervals are

more accurate than the EOS intervals, in the sense that the actual coverage rates are closer to

the nominal rates. The actual coverage rates are shown for each variable for the RTV and EOS

intervals in table 2, but summarizing across all variables, we find that the coverage rates of RTV

intervals are closer to the nominal for 20, 21 and 18 variables for the 50%, 75% and 90% nominal

intervals, respectively. Furthermore, our analysis suggests EOS-interval coverage should exceed

that of RTV intervals for variables with news revisions, with the opposite holding for noise

revisions. Of the 9 variables categorized as having news revisions, EOS-interval coverage is

greater for either all, or all but one, of these variables (depending on the nominal interval size).

Of the 7 variables with noise revisions, the RTV coverage rate is greater for all 7 variables for

the 50% and 75% intervals (and for all but one for the 90% intervals).

RTV estimation is expected to generate more accurate BJ-intervals than EOS because the

RTV-estimate of the in-sample standard deviation more accurately reflects the out-of-sample

uncertainty. Table 2 is designed to show the relationship between the in-sample standard

deviations, and the average interval coverage rates. However, obtaining the correct coverage

‘on average’ is a minimal requirement of a sequence of prediction intervals. To see this, let

Lt|t−1(p) and Ut|t−1(p) denote the lower and upper limits of a 1-step ahead prediction interval

13Aruoba (2008) and Corradi, Fernandez and Swanson (2009) provide recent extensions to testing for the
properties of data revisions.
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with nominal coverage p, and let It = 1 denote a ‘hit’, defined as:

It =

 1 if yt ∈
(
Lt|t−1(p), Ut|t−1(p)

)
,

0 otherwise
(9)

for a sequence of forecasts (
{
Lt|t−1(p), Ut|t−1(p)

}
) and realizations ({yt}), t = 1, 2, . . . , N . Cor-

rect unconditional coverage holds when E (It) = p, assessed by whether the sample mean

1
N

∑N
t=1 It is close to p. A more stringent criterion is that the occurrences of 1’s and 0’s are

unpredictable - for a given information set It (where It = {It, It−1, . . .} at a minimum) we

require E (It|It−1) = p. When It = {It, It−1, . . .}, this is equivalent to saying that {It} is iid

Bernoulli with parameter p. This is a joint test, and Christoffersen (1998) presents simple

likelihood-based tests of the component parts: correct unconditional coverage (E (It) = p);

independence (against a first-order Markov chain structure for {It}); as well as of the joint

hypothesis of correct conditional coverage. The test for independence will have power to detect

(unmodelled) changes in the volatility (because hits will tend to be clustered during the rela-

tively low volatility periods) as well as dynamic mis-specification of the model generating the

forecasts.14

Table 3 reports the p-values for the tests of correct unconditional coverage (UC), indepen-

dence (IND) and conditional coverage (CC) for each variable, for intervals of three nominal

sizes (50%, 75% and 90%). The bottom row of the table reports the number of variables for

which the null of the corresponding test is rejected (when the test is conducted at the 5% level).

The EOS intervals are rejected for more variables than the RTV intervals, and the rejections

are mainly of correct unconditional coverage (or ‘bias’), rather than of the test for indepen-

dence. This indicates that many of the differences between the nominal and actual coverage

rates recorded in table 2 for the EOS intervals are statistically significant.

Interval coverage rates may also differ because the interval is located about an inaccurate

point forecasts, and not just because of the scale of the predictive distribution underlying the

interval. However, not withstanding the superiority of RTV-estimation in principle for first-

moment prediction (see Koenig et al. (2003) and Clements and Galvão (2013b)), for our setup

14As an example of the latter, prediction intervals generated by an AR(1) (say), when the data generat-
ing process is an AR(2) with gaussian disturbances, will have correct unconditional coverage but not correct
conditional coverage. See Corradi and Swanson (2006) for a discussion in the context of density forecasting.
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we find little to choose between the two for the majority of variables, when the point forecasts

are evaluated by RMSE: see table 4.

Table 4 records the RMSEs of the point forecasts. We find that RTV improves accuracy

by 5% on RMSE for forecasting output growth. But with one or two exceptions, this is at the

top end of the gains to RTV, and a number of the entries exceed one, suggesting EOS is more

accurate for those variables. This suggests that the RTV-intervals chiefly benefit from more

accurate estimates of scale rather than location. The general point is that RTV estimation in

practical forecasting may matter more for second-moment type forecasts (such as prediction

intervals) than for point forecasting.

This last point is supported by the results in table 4 for bivariate ADL (autoregressive-

distributed lag) models. For each of the 25 variables we generate EOS and RTV point forecasts

for the 24 possible bivariate ADL models, where we include 2 lags of the dependent variable, and

of the explanatory variable. This allow us to assess the relative point forecasting performance

of RTV compared to EOS for models with explanatory variables which are subject to revision.

The results for the ADL models are no more favourable for RTV than the results for AR models.

We present the median, mean, minimum and maximum of the ratios across the 24 ADL models

for each variable. There is an ADL model (i.e., an explanatory variable) for which RTV is

10% more accurate than EOS for forecasting output growth. But equally there is a variable for

which EOS is 9% more accurate for forecasting output growth, and this pattern holds across

the majority of variables.

5 Simulation study

We established in section 3 that BJ intervals based on RTV-estimation would be correctly-sized

in the presence of data revisions, and that intervals based on EOS-estimation of the model

would likely have a coverage in excess of the nominal when data revisions are news, but less

than the nominal when data revisions are noise. These statements hold ‘in population’, that is,

when we ignore parameter estimation uncertainty.15 Even in the absence of data revisions, it

is well known that BJ-intervals can be adversely affected by parameter estimation uncertainty

15Note that the empirical estimates of coverage rates in section 4 are generally in line with the analysis in
section 3.
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when the sample size is small. In addition, there will be uncertainty about the model order.

Having to select appropriate model orders may affect the relative merits of RTV and EOS.

Model selection issues are especially pertinent in our context because the optimal model order

for RTV-estimation may differ from that using EOS-estimation. To illustrate with a simple

case, consider the example in section 3, where the true values follow a zero-mean AR(1) and

there is a single noise revision. Hence the data generating process is given by:

yt = αyt−1 + ηt (10)

and the estimates of yt are given by:

yt+1t = yt + εt

yt+nt = yt
(11)

for n = 2, 3, . . .. Let the population first-order RTV-regression be:

yt+1t = βytt−1 + et,RTV . (12)

where from (7) we know that β 6= α when E
(
ε2t
)
6= 0 (so β 6= α when there are noise revisions).

Substituting for yt+1t and ytt−1 from (11) into (12) yields et,RTV = yt − βyt−1 + εt − βεt−1.

Then it follows immediately that the first-order model is dynamically-mis-specified because the

second ‘lag’ytt−2 (here equal to yt−2) is correlated with the error term et,RTV .16

For these reasons we investigate the small-sample properties of the procedures by simula-

tion, allowing that the appropriate model orders need to be selected by an information criterion,

such as BIC. Of interest is whether RTV-estimation provides accurate intervals in these cir-

cumstances.

Simulating data with revisions requires a complete specification of the data revisions process.

This requires giving values to a relatively large number of parameters, and the concomitant

concern that the results of the simulation study may be specific to the set of values chosen (or

16

Cov (et,RTV , yt−2) = Cov (yt − βyt−1, yt−2) + Cov (εt − βεt−1, yt−2) .

The second covariance on the RHS is zero, and the first is only zero when β = α, in which case yt − βyt−1 = ηt.
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more generally, to the range of values considered). In order to obtain sensible values for the

data generating process, we use the model estimated by Jacobs and van Norden (2011) for US

real output growth as our base case. They allow for data revisions to be news or noise, with

and without ‘spillovers’. We also experiment with a variant in which the standard deviation

of the underlying shock is divided by 4, but the standard deviations of the news and noise

disturbances (and all the other parameters) are left unaltered, to gauge the impact of data

revisions being more prominent (than they are for real output, as estimated by Jacobs and van

Norden (2011)). To save space, we do not repeat the details of their model, except to note that

there are four vintage estimates of each time period, and the final is not assumed to reveal the

truth (i.e., yt+4t 6= yt). The estimated parameter values that we use are taken from their Table

1 (p.107). We simulate 25, 000 replications of length T + 1,17 and on each sample we estimate

the AR model by EOS and RTV on the first T observations, and calculate a BJ prediction

interval for the first estimate of the T + 1 observation (i.e., yT+2T+1).

The results are recorded in table 5. For the Jacobs and van Norden (2011) data generating

process (top half of table) the RTV intervals are under-sized at small T but approximately

correctly-sized at larger T . The coverage rates are similar (for a given T ) whether revisions are

news of noise, and irrespective of whether there are spillovers: RTV-intervals are largely immune

to the effects of data revisions. This is underlined by comparing these estimated coverage

rates with those when there are no revisions (recorded at the foot of the table): the two sets

are virtually identical.18 By contrast, EOS-estimation is not a reliable method of generating

prediction intervals, giving rise to intervals which are under-sized or over-sized, depending on

T , when revisions are news. When revisions are more prominent (second half of table), the

performance of the EOS intervals worsens, and the EOS intervals are clearly under-sized when

there is noise. Whereas the performance of the RTV intervals is virtually unaffected. There is

little appreciable effect from allowing spillovers.

Table 6 records the rejection frequencies of the tests for unconditional coverage, indepen-

dence and conditional coverages. For the RTV intervals, there are some minor size distortions

17That is, after discarding a suitable number of initial observations to remove any dependence on initial
conditions.
18 It is well known in the literature that neglecting the uncertainty inherent in the estimated model parameters

will lead to under-sized intervals, and this effect is obviously more pronounced at small T .
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at the smaller sample sizes,19 but otherwise the tests are correctly sized, while the EOS inter-

vals are clearly inadequate, and this is flagged by the tests of coverage. For the selected Monte

Carlo data-generation process parameter values, the rejections are greater for noise revisions,

and for the 75% and 90% nominal intervals are in excess of 50%. We conclude that predic-

tion intervals from RTV-estimation with BIC model-order specification generates intervals with

desirable properties, whilst the traditional approach (EOS-estimation) does not.

6 Conclusions

We have shown that assessments of future macroeconomic uncertainty based on the in-sample

fit of a model are likely to be misleading when the variable being modelled is subject to revision.

This is because the data on which the model is estimated will be for the most part fully-revised

or mature data, whereas the out-of-sample value is a first-release or only lightly-revised data

point. In the context of first-moment prediction Kishor and Koenig (2012) referred to estimating

the model on fully-revised data, and conditioning the forecast on only lightly-revised data, as

mixing ‘apples and oranges’. In the context of second-moment prediction the mismatch results

instead from supposing the goodness of fit of the model on the fully-revised data (i.e., the

in-sample period) is an accurate representation of the out-of-sample fit.

We have shown that a simple solution is to use real-time-vintage (RTV) data. This was pro-

posed by Koenig et al. (2003) in the context of first-moment prediction. Based on the evidence

for the 25 macro variables we consider in this paper, RTV-estimation is more beneficial for

second-moment forecasting. Its validity in population (abstracting from parameter estimation

uncertainty) is easily established. Its good forecast performance has been demonstrated, and

is supported by a simulation study.

We have considered autoregressive models in this paper, but the logic of the arguments

suggests that the findings carry over immediately to models with explanatory variables, so

the concerns are potentially more generally applicable. For example, there has been much

interest in measuring macro-uncertainty in the recent literature, driven in large part by the

19We generate sequences of 100 prediction intervals and actuals. The initial sample size is recorded in the
table, and the model is re-estimated (by EOS or RTV) on an expanding window of data prior to calculating the
interval. For the resulting vector of hits and misses, we calculate the three tests. The table records the rejection
frequences across 10,000 replications of this procedure.
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belief that time-varying uncertainty may play an important role in business cycle fluctuations

(see, e.g., Bachmann, Elstner and Sims (2013)). Some of the approaches to measuring macro-

uncertainty use ‘data-rich’modelling environments, and are pseudo real-time, perhaps because

of the diffi culties of collecting and managing different data vintages at each point in time. Two

recent closely-related contributions are Jurado, Ludvigson and Ng (2013) and Henzel and Rengel

(2013). These papers are pseudo real-time, but the measures of macro uncertainty are derived

from the individual variables’forecast errors, rather than the in-sample fits of the models, and

so should be immune to the distorting effects described in this paper.20 Other approaches which

use instead the in-sample fit of the model - as in the standard approach to calculating prediction

intervals illustrated in this paper - are likely to be misleading in the presence of data revisions.

20For example, Jurado et al. (2013) calculate forecast errors for each of a large number of variables using a
factor model, and then fit a stochastic volatility model to the forecast errors to obtain individual-variable volatilty
forecasts, which are then aggregated.
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Table 1: Data Description

Mnemonic Description
routputq Real GNP/GDP
rconq Real Personal Consumption Expenditures Total
rconndq Real Personal Consumption Expenditures: Nondurable Goods
rcondq Real Personal Consumption Expenditures: Durable Goods
rinvbfq Real Gross Private Domestic Investment: Non-residential
rinvresq Real Gross Private Domestic Investment: Residential
rexq Real Exports of Goods and Services
rimpq Real Exports of Goods and Services
rgq Real Government Consumption and Gross Investment: Total
ruc Unemployment Rate
pq Price Index for GNP/GDP
pconq Price Index for Personal Consumption Expenditures
pimpq Price Index for Imports of Goods and Services
noutputq Nominal GNP/GDP
nconq Nominal Personal Consumption Expenditures
wsdq Wage and Salary Disbursements
oliq Other Labor Income
propiq Proprietors’Income
divq Dividends
pintiq Personal Interest Income
tranrq Transfer Payments
sscontrq Personal Contributions for Social Insurance
npiq Nominal Personal Income
ptaxq Personal Tax and Nontax Payments
ndpiq Nominal Disposable Personal Income

Source: The Real-Time Data Set for Macroeconomists (RTDSM),
http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/, see
Croushore and Stark (2001).
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Table 2: RTV and EOS Box-Jenkins Prediction Intervals Coverage Rates for RTV and EOS

Ratio RTV t- stat t- stat 50% interval 75% interval 90% interval
to EOS sd. for ‘news’ for ‘noise’ RTV EOS RTV EOS RTV EOS

routputq 0.87 2.19 -4.23 0.50 0.52 0.72 0.78 0.86 0.93
rconq 1.14 6.29 -0.16 0.52 0.48 0.74 0.66 0.84 0.88
rconndq 1.27 9.46 -0.13 0.48 0.40 0.72 0.60 0.86 0.79
rcondq 1.07 6.44 1.52 0.52 0.45 0.69 0.62 0.83 0.74
rinvbfq 1.18 2.11 -4.53 0.55 0.48 0.76 0.64 0.90 0.86
rinvresq 1.14 2.17 -3.15 0.52 0.43 0.71 0.66 0.84 0.78
rexq 1.04 3.84 -3.32 0.52 0.36 0.72 0.67 0.86 0.84
rimpq 1.13 5.72 -3.20 0.43 0.38 0.62 0.60 0.84 0.72
rgq 1.12 7.50 -1.74 0.66 0.59 0.81 0.78 0.91 0.91
ruc 1.22 0.49 -0.12 0.50 0.41 0.69 0.60 0.79 0.71
pq 1.17 2.60 -1.51 0.52 0.41 0.72 0.66 0.90 0.79
pconq 1.18 3.79 0.87 0.45 0.40 0.67 0.59 0.83 0.79
pimpq 1.10 3.23 -2.68 0.43 0.41 0.78 0.71 0.86 0.81
noutputq 0.96 0.76 -5.43 0.55 0.57 0.76 0.74 0.90 0.91
nconq 1.13 4.91 -0.67 0.62 0.57 0.86 0.74 0.91 0.88
wsdq 0.46 1.29 -10.13 0.64 0.81 0.81 0.91 0.90 0.98
oliq 0.76 1.63 -12.21 0.62 0.71 0.83 0.88 0.88 0.95
propiq 1.13 4.28 -5.74 0.62 0.69 0.86 0.83 0.95 0.90
divq 0.69 1.76 -7.44 0.76 0.86 0.81 0.90 0.88 0.93
pintiq 0.62 0.78 -9.13 0.47 0.66 0.64 0.81 0.78 0.93
tranrq 0.86 1.31 -2.17 0.59 0.55 0.76 0.79 0.83 0.86
sscontrq 1.08 1.51 -1.72 0.60 0.62 0.74 0.79 0.86 0.84
npiq 0.69 0.63 -7.81 0.59 0.74 0.78 0.84 0.86 0.91
ptaxq 0.78 -0.84 -5.59 0.59 0.71 0.83 0.84 0.86 0.88
ndpiq 0.83 1.37 -5.97 0.59 0.67 0.83 0.88 0.90 0.91

The second column reports the ratio of the estimated in-sample standard errors for RTV to
EOS. (The EOS standard deviation is the average of the standard deviations calculated for
each of the 60 rolling window estimation samples. The RTV sd. is calculated similarly). The
third and fourth columns record the t-statistics for tests that the 1st-estimate to 15th-estimate
revisions are news and noise, respectively. These tests are run once for each variable and relate
to observation periods 1970:Q2 to 2007:Q2. The remaining columns record coverage rates for
nominal coverages of 50%, 75% and 90%.
For both AR and EOS the model is an AR(2), estimated on forecasts (vintage) origins 1996:Q2
to 2011:Q1, using a rolling window of observations (and an initial window estimated on post
1984 observations).
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Table 4: RTV and EOS forecasts with AR models and ADL

RMSFE Ratio of RMSFE of RTV to EOS

AR AR ADLmed ADLmea ADLmin ADLmax
routputq 0.53 0.95 0.98 0.98 0.90 1.09
rconq 0.52 1.07 1.08 1.07 0.97 1.14
rconndq 0.85 1.03 1.03 1.04 0.99 1.14
rcondq 2.90 1.00 1.01 1.01 0.97 1.07
rinvbfq 2.49 1.00 1.02 1.03 0.96 1.11
rinvresq 3.30 0.95 0.96 0.97 0.93 1.11
rexq 2.48 0.98 0.98 0.99 0.94 1.10
rimpq 2.56 1.01 1.03 1.03 0.94 1.12
rgq 0.75 1.02 1.05 1.08 1.00 1.63
ruc 0.29 1.03 1.04 1.05 1.00 1.12
pq 0.25 0.99 1.00 1.02 0.92 1.40
pconq 0.44 1.00 1.00 1.01 0.97 1.09
pimpq 2.51 1.03 1.04 1.05 1.00 1.14
noutputq 0.55 0.96 0.98 0.99 0.93 1.16
nconq 0.69 0.97 1.00 1.00 0.96 1.07
wsdq 0.57 0.78 0.78 0.78 0.62 0.92
oliq 0.50 0.98 0.96 0.96 0.85 1.16
propiq 1.22 1.13 1.14 1.17 1.07 1.77
divq 7.09 1.32 1.36 1.36 1.25 1.46
pintiq 1.29 1.00 0.96 0.95 0.82 1.11
tranrq 1.66 0.98 0.98 0.99 0.92 1.06
sscontrq 1.56 1.00 1.01 1.01 0.96 1.06
npiq 0.54 0.99 1.00 1.00 0.81 1.10
ptaxq 4.94 1.03 1.04 1.04 0.95 1.15
ndpiq 0.81 1.09 1.09 1.09 0.96 1.31

Notes. The table reports the RMSEs for a rolling forecasting scheme, with initial window
beginning in 1984:Q1. Out-of-sample forecast period is 1996:Q2 to 2011:Q1.
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Table 5: Monte Carlo of small-sample coverage rates of EOS and RTV intervals

50% 75% 90%
EOS RTV EOS RTV EOS RTV

Jacobs and van Norden (2011) parameter values
A. News, no spillovers

15 0.45 0.43 0.68 0.66 0.83 0.81
25 0.49 0.47 0.73 0.71 0.88 0.86
50 0.51 0.48 0.76 0.73 0.91 0.88
200 0.53 0.50 0.78 0.75 0.92 0.90

B. Noise, no spillovers
15 0.43 0.43 0.65 0.66 0.81 0.81
25 0.46 0.46 0.70 0.70 0.85 0.86
50 0.47 0.48 0.72 0.73 0.88 0.88
200 0.49 0.50 0.74 0.75 0.89 0.90

C. News & spillovers
15 0.46 0.43 0.70 0.66 0.84 0.81
25 0.51 0.47 0.75 0.71 0.89 0.86
50 0.53 0.49 0.78 0.73 0.92 0.88
200 0.54 0.50 0.79 0.75 0.93 0.90

D. Noise & spillovers
15 0.43 0.43 0.65 0.66 0.81 0.81
25 0.45 0.46 0.70 0.70 0.85 0.86
50 0.47 0.48 0.72 0.73 0.87 0.88
200 0.49 0.50 0.74 0.75 0.89 0.90

Disturbance s.d. multiplied by 0.25

A. News, no spillovers
15 0.46 0.42 0.69 0.64 0.84 0.79
25 0.52 0.47 0.76 0.70 0.90 0.86
50 0.54 0.48 0.79 0.73 0.92 0.88
200 0.56 0.50 0.80 0.75 0.94 0.89

B. Noise, no spillovers
15 0.38 0.43 0.59 0.65 0.75 0.81
25 0.40 0.47 0.63 0.71 0.79 0.86
50 0.41 0.48 0.65 0.73 0.81 0.89
200 0.43 0.50 0.66 0.75 0.82 0.89

C. News & spillovers
15 0.48 0.42 0.71 0.64 0.85 0.80
25 0.53 0.47 0.77 0.70 0.91 0.86
50 0.55 0.48 0.80 0.73 0.93 0.88
200 0.57 0.50 0.82 0.74 0.94 0.89

D. Noise & spillovers
15 0.37 0.43 0.58 0.65 0.74 0.81
25 0.40 0.47 0.62 0.71 0.79 0.86
50 0.41 0.48 0.64 0.73 0.81 0.89
200 0.42 0.50 0.65 0.75 0.82 0.89

When there are no revisions, the coverage rates are: 0.43, 0.46, 0.48, 0.50 (for a nominal 50%,
for estimation samples 15 to 200); 0.66, 0.70, 0.73, 0.75 (for a nominal 75%); and 0.82, 0.86,
0.88, 0.89 (for a nominal 90%).
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